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Abstract. Experiments, both real and natural, can be powerful tools for causal infer-
ence, but the standard diUerence-in-means estimator may be biased when the outcomes
of certain units are undeVned or unobserved. This problem arises in studies across a
wide range of Velds, including epidemiology, economics, political science, and psychol-
ogy. Put simply, the initial randomization of treatment does not guarantee that the
treated and control units with observed outcomes will be comparable. In this paper, I
formally derive an expression for attrition bias that takes into account diUerent types
of attrition, and I clarify under what conditions this bias will arise. I then analyze sev-
eral major studies that face diUerent versions of the attrition problem and outline some
strategies that the researchers could use to address it. These examples are primarily from
natural experiments in international relations, although they illustrate similar problems
faced by many other studies in diUerent Velds. The examples show that the best solution
usually depends on the question of interest and the version of the attrition problem that
researchers face.

Attrition can be a major threat to causal inference in experimental research. Even

when treatment assignment is random, the normal estimates may be biased if some

subjects die, migrate, or fail to respond for other reasons. This problem arises for med-

ical experiments where some patients pass away or move to other hospitals before the

outcome is measured. Similarly, it also faces studies that compare citizens who were

randomly drafted into military service to those who were not.1 Even if there was perfect

compliance, the survivors in the treatment and control groups are not comparable, since

whether a person survives is not random. Attrition can even cause bias when there is

no missing outcomes in the dataset. For instance, a study that tests how indiscriminate

1Henderson 2014
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bombing aUects the nationalism of citizens might not appear to have missing outcomes if

it was collected after the war, but there would likely be a substantial number of bombed

individuals who never appeared in the dataset. If these citizens tended to be older or

poorer than the citizens who survived, then this problem could be a major source of

bias.

As these examples suggest, attrition problems come in a variety of forms. Sometimes

units die or are destroyed, and other times they survive but fail to respond. Researchers

may be able to distinguish between these diUerent types of non-response, or they may

have no information about the units with missing outcomes. Moreover, researchers

sometimes know all of the units that were originally in the sample, but are just missing

outcomes for some of them. Other times, researchers never even observe certain units

and might have little information about how serious the attrition problem is.

The researcher’s question of interest can also aUect the extent to which attrition un-

dermines inference. For example, a policymaker who wants to know if indiscriminate

bombing during war breaks the enemy’s resolve might be indiUerent to whether the

bombing changes the victims beliefs or just kills the more nationalistic citizens at higher

rates. On the other hand, a political psychologist might care deeply about which of

these two explanations is driving the results, and thus have more reason to worry about

attrition.

In this study, I attempt to address the attrition problem in a more comprehensive way

than past research. Previous studies have contributed to solving the attrition problem

by deVning the bias in one context and oUering a single solution, such as bounding the

estimated eUect or using imputation to recover lost outcomes. Some of these techniques

are very innovative and can be highly useful in certain contexts. In contrast, this study
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categorizes diUerent versions of the attrition problem, formally derives a more general

expression for attrition bias, and recommends which techniques are most appropriate in

diUerent situations.

No doubt, the best strategy for managing attrition will vary from case to case. In some

situations, researchers can estimate meaningful causal parameters by simply listwise

deleting the units with missing outcomes. In others, the solution is not so simple, but

researchers can make progress by using some of the methods proposed here or developed

in past research. There are also cases where it is very diXcult to overcome attrition,

and researchers might consider using an alternative research design like regression or

matching. In this paper, I illustrate these key distinctions between diUerent versions of

the attrition problem through examples from international relations and security studies.

My goal is to provide a framework for thinking about attrition in diUerent contexts and

Vnding the best possible way to resolve it in each case.

This paper proceeds as follows. In Section 1, I lay the groundwork by discussing dif-

ferent types of attrition in the context of the potential outcomes framework and formally

derive the bias caused by attrition. Section 2 outlines some of the techniques that previ-

ous studies have suggested to solve attrition problems, along with presenting some new

ones. In Section 3, I classify the diUerent versions of the attrition problem. Section 4

explains how these versions can be addressed with diUerent methods and provides some

examples to illustrate each strategy. The Vnal section concludes.

Section 1: The Potential Outcomes Framework and the Attrition Problem

Basic Set-up. Rubin (1974) proposed a clear framework for understanding how exper-

iments can be used for causal inference. Assume that there are n units, each with a
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potential outcome under treatment (Yit) and a potential outcome under control (Yic).

The Average Treatment EUect (τ̄ ) is deVned as the average diUerence in these potential

outcomes across all the units: τ̄ = 1
n

∑
i(Yit − Yic). We cannot compute τ̄ directly, since

we only observe Yit or Yic for each unit, depending on whether that unit was assigned

to treatment or control. Thus, causal inference is a missing data problem. Randomized

treatment assignment allows researchers to estimate τ̄ without bias by providing ran-

dom samples from the Yit’s and Yic’s. It also makes it very straightforward to calculate

the probability of seeing a τ̂ as extreme or more extreme than the observed one under

the assumption that τ̄ = 0.

An attrition problem arises when some units do not have observed or deVned out-

comes under both treatment and control. For instance, a draftee who died in Vietnam

would have no deVned income (U) in 1980. It would make little sense to code this per-

son’s income at $0, since being dead is very diUerent than being unemployed. Units can

also have unobserved outcomes, whether they are deVned or undeVned. For example,

if researchers knew that a draftee was alive, but he was unwilling to report his income,

then his outcomewould be deVned but unobserved (M). On the other hand, he could have

an undeVned and unobserved outcome if he died but the researchers were not aware of

it. I refer to these units as lost (L), as researchers do not even know whether they are

deVned or deVned. However, researchers do know that lost units were originally in the

sample.

Now most researchers label all missing or undeVned outcomes as NA, but doing so

discards important information. There are major substantive diUerences between people

who die and people who fail to answer their phones, and there are also key diUerences in

terms of how you handle these diUerent types of attrition statistically, as I will discuss in
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Figure 1: Potential Scenarios

Case 1
Unit Yit Yic
1 2 4
2 1 1
3 4 3
4 0 2
5 3 2

Case 2
Unit Yit Yic
1 3 1
2 1 2
3 2 3
4 1 2
5 0 3

Case 3
Unit Yit Yic
1 1 1
2 3 U
3 U 2
4 U U
5 0 1

Case 4
Unit Yit Yic
1 2 3
2 U 3
3 1 U
4 3 2
5 0 U

Case 5
Unit Yit Yic
1 5 2
2 1 1
3 2 0
4 3 1
5 1 0

Case 6
Unit Yit Yic
1 3 1
2 2 1
3 2 2

4 3 ❶
5 ❶ 0

Notes: Black numbers denote observed outcomes, gray numbers denote un-
observed outcomes, “U” stands for undeVned, and the white numbers in
dark circles represent potential outcomes for units that are missing from
the dataset under treatment or control.

the next two sections. Better practice would be to label missing data as U when known

to be undeVned, M when known to be deVned but missing, and L when lost, as well as

provide speciVc information about the sources of missingness when possible.

Figure 1 shows the potential outcomes for several scenarios that researchers might

face. Case 1 has no attrition problem, since all units have deVned and observed poten-

tial outcomes under treatment and control. In Case 2, all units have deVned potential

outcomes, but some are unobserved. Case 3 is a scenario where all units have observed

potential outcomes, but some are undeVned. Case 4 features both unobserved and unde-

Vned outcomes. Case 5 has a hidden attrition problem, in the sense that whenever Unit
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1 is assigned to control, researchers will be unaware of attrition because all units will

have deVned and observed outcomes. However, the normal diUerence in means estima-

tor will be biased, since E[τ̂ ] 6= τ̄ prior to randomization. SpeciVcally, τ̄ = 7
5
, whereas

E[τ̂ ] = 3
5
if we ignore missingness when it arises. In Case 6, Unit 4 is never observed

by researchers when it is assigned to control, and Unit 5 is never observed when it is as-

signed to treatment. For instance, if researchers in 1980 compared men who were drafted

to go to Vietnam to men who were not, Unit 4 would only be found by researchers if he

was drafted, and Unit 5 would only be found if he was not drafted. Otherwise, these men

would not be in the dataset. I refer to such subjects as “phantom units”, and they can

cause an attrition problem even when no units in the dataset have missing outcomes.

Average Treatment EUect Under Attrition. Assume that there are n units in the sample

at the time of randomization, and m of them are assigned the treatment group. Each

unit’s treatment status is denoted as Ti ∈ {0, 1}. Furthermore, each units potential

outcomes can be deVned or undeVned, Dit, Dic ∈ {0, 1}, and observed or unobserved,

Oit, Oic ∈ {0, 1}.

The the usual diUerence in means estimator may be biased if there are unobserved

outcomes, as I will show shortly, but a more fundamental problem arises when potential

outcomes are undeVned. Note that τi = Yit−Yic only exists if Unit i has deVned potential

outcomes under both treatment and control. Thus, if any unit has an undeVned potential

outcome, then the Average Treatment EUect (τ̄ = 1
n

∑
i(Yit−Yic)) is undeVned. In other

words, the standard parameter of interest in a normal experiment simply does not exist

if any units have undeVned potential outcomes, and researchers will have to choose

something else to estimate.
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Alternative Parameters. One parameter that still exists when potential outcomes are

undeVned is the DiUerence in World Averages (DIWA): E[Yit|Dit = 1]−E[Yic|Dic = 1].

DIWA is the mean diUerence between the deVned outcomes in the world where all units

are assigned to treatment and the deVned outcomes in the world where all units are

assigned to control. Suppose that a dictator ran an experiment to see how participation

in war aUected support for his regime. The DIWA would be the average level of support

for the survivors when the entire sample went to war minus the the average level of

support for the survivors when the entire sample stayed home.

Researchers can also estimate the Restricted Average Treatment EUect (RATE), which

is the treatment eUect for units that would survive under both treatment and control.

SpeciVcally, it is written as RATE = E[Yit − Yic|Dit, Dic = 1]. Zhang and Rubin (2003)

call this parameter the Surviver Average Causal EUect (SACE). I break from this ter-

minology because units may have undeVned potential outcomes for reasons other than

death.

When all units have deVned potential outcomes, the ATE equals the RATE and the

DIWA. However, when there are any undeVned potential outcomes, the ATE is unde-

Vned and the RATE and DIWA will not necessarily be equal.

Deriving the Bias. We can now calculate the bias of the normal diUerence in means

estimator when attrition is present with respect to the DIWA and the RATE. Recall that

the ATE (τ̄ ) is only deVned when all units have deVned potential outcomes, in which

case it is simply equivalent to the DIWA and the RATE. Thus, I will not derive the bias

speciVcally for the ATE, since it is just a special case of the DIWA and the RATE.

The normal diUerence-in-means estimator is written as
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τ̂ = Avg(Yit|Ti = 1, Dit = 1, Oit = 1)− Avg(Yic|Ti = 0, Dic = 1, Oic = 1)

The expected value of τ̂ is easily calculated after noting that

E[Avg(Yit|Ti = 1, Dit = 1, Oit = 1)] = 1∑n
i=1 DitOit

∑n
i=1 YitDitOit

E[Avg(Yic|Ti = 0, Dit = 1, Oic = 1)] = 1∑n
i=1 DicOic

∑n
i=1 YicDicOic

So

E[τ̂ ] = 1∑n
i=1 DitOit

∑n
i=1 YitDitOit − 1∑n

i=1 DicOic

∑n
i=1 YicDicOic

In comparison, the DIWA can be written as

DIWA= E[Yit|Dit = 1]− E[Yic|Dic = 1]

DIWA= 1∑n
i=1 Dit

∑n
i=1 YitDit − 1∑n

i=1 Dic

∑n
i=1 YicDic

and the RATE can be written as

RATE = E[Yit − Yic|Dit, Dic = 1]

RATE = E[Yit|Dit, Dic = 1]− E[Yic|Dit, Dic = 1]

RATE = 1∑n
i=1 DitDic

∑n
i=1 YitDitDic − 1∑n

i=1 DitDic

∑n
i=1 YicDitDic

So the bias of the normal diUerence in means estimator with respect to the DIWA is

BiasDIWA(τ̂) = E[τ̂ ] - DIWA

BiasDIWA(τ̂) = 1∑n
i=1 DitOit

∑n
i=1 YitDitOit − 1∑n

i=1 DitOic

∑n
i=1 YicDicOic−
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[ 1∑n
i=1 Dit

∑n
i=1 YitDit − 1∑n

i=1 Dic

∑n
i=1 YicDic]

BiasDIWA(τ̂) = 1∑n
i=1 DitOit

∑n
i=1 YitDitOit − 1∑n

i=1 Dit

∑n
i=1 YitDit−

[ 1∑n
i=1 DitOic

∑n
i=1 YicDicOic − 1∑n

i=1 Dic

∑n
i=1 YicDic]

This equation can be rewritten as (proof in the online appendix)

BiasDIWA(τ̂) = P (Oit = 0|Dit = 1)[E[Yit|Dit, Oit = 1]− E[Yit|Dit = 1, Oit = 0]−

(P (Oic = 0|Dic = 1)[E[Yic|Dic, Oic = 1]− E[Yic|Dic = 1, Oic = 0])

It is clear to see from either of the two equations above that τ̂ will be unbiased if (1)

P (Oit = 0|Dit = 1) and P (Oic = 0|Dic = 1) or (2) E[Yit|Dit, Oit = 1] = E[Yit|Dit = 1]

and E[Yic|Dic, Oic = 1] = E[Yic|Dic = 1]. In other words, τ̂ will be unbiased if (1) all

deVned outcomes can be observed or (2) the observed potential outcomes under treat-

ment are representative of all the deVned potential outcomes under treatment, and the

observed potential outcomes under control are representative of all the deVned potential

outcomes under control. Otherwise, there will be bias in the estimator except in the

rare case where the values in the Vrst and second lines oUset. In short, estimation of the

DIWA is threatened by deVned but missing potential outcomes, where the missingness is

“non-random” (meaning that it is uncorrelated with the potential outcomes, or Yit ⊥ Oit

and Yic ⊥ Oic).

The bias of the normal diUerence in means estimator with respect to the RATE is

Bias(τ̂) = E[τ̂ ] - RATE

BiasRATE(τ̂) = 1∑n
i=1 DitOit

∑n
i=1 YitDitOit − 1∑n

i=1 DicOic

∑n
i=1 YicDitOic−
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[ 1∑n
i=1 DitDic

∑n
i=1 YitDitDic − 1∑n

i=1 DitDic

∑n
i=1 YicDitDic]

BiasRATE(τ̂) = 1∑n
i=1 DitOit

∑n
i=1 YitDitOit − 1∑n

i=1 DitDic

∑n
i=1 YitDitDic−

[ 1∑n
i=1 DitOic

∑n
i=1 YicDitOic − 1∑n

i=1 DitDic

∑n
i=1 YicDitDic]

So, in general, there will be no bias when the average of the deVned and observable

Yit’s equals the average of the Yit’s for units with deVned potential outcomes under both

treatment and control, and when the same holds true for the Yic’s.

SpeciVcally, the condition above will hold if, for all i such that Dit = 1, Yit ⊥

{Oit, Dic}, and for all i such that Dic = 1, Yic ⊥ {Oic, Dit}. This will be guaranteed

if attrition is orthogonal to the potential outcomes, although complete orthogonality is

not necessary for unbiasedness. A special case of the condition above is when the treat-

ment does not aUect D or O for any unit (the treatment does not cause any outcomes

to be missing or undeVned) and the units with observed and deVned outcomes do not

have a diUerent average treatment eUect than all the units with deVned outcomes. In

this case, Dit = Dic and Oit = Oic for all units, and the proof of unbiasedness is trivial

from the equation above. If the units with observed and deVned outcomes have diUerent

average treatment eUect, then the average treatment eUect for units with observed po-

tential outcomes can still be estimated unbiasedly, but the average treatment eUect for

all of the units with deVned potential outcomes is no longer identiVed.

Thus, while intuition might suggest that missingness must be random to estimate

important causal parameters, this is not actually the case. If it is very unlikely that the

treatment aUected either D or O, then it is possible to estimate the treatment eUect for

the sub-sample of the data with observed and deVned potential outcomes without bias.

As mentioned earlier, it is also possible to estimate the DIWA provided that O=1 for all
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deVned potential outcomes. However, there are many scenarios where these conditions

will not be enough to allow researchers to estimate what they want. In these cases, they

must look to the strategies for dealing with attrition problems, which I will outline in

the next section.

Section 2: Techniques for Overcoming Attrition

There are a diverse group of methods that researchers have developed to resolve at-

trition problems. In this section, I outline six of the most common general approaches

used in past research, and I propose a some new ones. For several of these approaches,

there are a variety of speciVc techniques that can be used. The purpose of this paper is

not to explain and evaluate the speciVc techniques, but to investigate which general ap-

proaches are most useful in diUerent contexts. Therefore, I will focus on the key aspects

and assumptions of the general approaches while brieWy describing some of the speciVc

techniques throughout this discussion.

Imputation. Imputation involves predicting outcomes by using somemodel that is based

on the covariates. There are a number of possible ways to impute outcomes.

Principal-StratiVcation. Like imputation, principal-stratiVcation relies on the covari-

ates, although it is essentially the opposite of imputation. Whereas imputation involves

estimating outcomes for the units that do not have them, principal stratiVcation reduces

the sample to the units that researchers believe would have outcomes under both treat-

ment and control.2 The goal is to estimate the RATE for some subset of the data. For

instance, if researchers noticed that the treatment killed a high percentage of men, but all

of the women survived, they might focus their analysis only on the women. Imputation,

2Rubin 2006
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on the other hand, is typically used to estimate the ATE. In general, imputation is more

appropriate when dealing with missing but deVned outcomes (M), whereas principal-

stratiVcation is better suited for undeVned outcomes (U).

A limitation of this approach is that it may not be clear which units would have out-

comes under both treatment and control. When this is the case, a common approach is to

predict the presence of outcomes based on some model of the covariates.3 Researchers

can then reweigh the observed outcomes by the inverse their estimated probability of

being observed.

As with imputation, it is very diXcult to assess the bias that could be induced by

this method. Whether it is preferable to regression or matching on the observed and

observed and deVned data may be hard to determine and will vary from case to case.

Upward Bounding. Upward bounding involves calculating the largest and smallest treat-

ment eUects for any possible values of the missing outcomes.4 This is straightforward

when outcomes are restricted to a range of values. When outcomes are unbounded, re-

searchers must assume that they are restricted to some reasonable set of values. They

can also use covariates to specify a range of plausible outcomes for each unit. Like im-

putation, upward bounding involves recovering the dataset and computing the ATE for

all units.

Downward Bounding. Downward bounding is useful when researchers are interested

in the RATE. Since the RATE is the treatment eUect for units with deVned potential

outcomes under both treatment and control, researchers can drop the units with un-

deVned outcomes, since they are clearly not part of this group. Next, researchers just

3; Gelman and Hill 2007; Jo and Stuart 2009
4Lee 2002
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need to compute the highest and lowest treatment eUects after removing units with de-

Vned outcomes, since these are the only units that might have potential outcomes under

treatment and control. Zhang, Rubin, and Mealli derive a formula for estimating these

bounds based on large-sample approximations.5 I propose an alternative method here

that does not depend on these assumptions.

The primary issue is determining how many units should be dropped. In theory, all of

the treated and control units with deVned outcomes might have undeVned counterfactu-

als, meaning that there would be no units with deVned outcomes under both treatment

and control. However, this problem will be very unlikely in most cases. In fact, it is

usually possible to estimate a reasonable upper limit on the possible number of miss-

ing units. If 5% of the treated units have undeVned outcomes, then we can assume that

about 5% of the control units would have had undeVned outcomes if they were assigned

to treatment, and put a conVdence interval on this estimate. This estimation is possible

as long as we are not missing units from our dataset, since treatment was random and

we would know whether or not we had deVned outcomes for each unit.

Assuming that all outcomes our observed (with some undeVned), the 95% conVdence

interval for the number of treated units that have undeVned control potential outcomes

is easy to estimate with permutation inference. SpeciVcally, the conVdence interval for

total number of units Uc with undeVned potential outcomes under control can be esti-

mated using the hypergeometric distribution. Let N be the total number of units, nc

be the number of control units, and uc be the number of control units with undeVned

outcomes. Then the one-sided 95% conVdence sets the upper bound as

Uc ≤ argmin
K≥uc

{
∑uc

i=1

(K
i )(

N−K
nc−i)

(N
nc

)
≤ 0.05}

5Zhang, Rubin, and Mealli 2008
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Similarly, the one-sided 95% conVdence interval for total number of units Ut with

undeVned potential outcomes under treatment is

Ut ≤ argmin
K≥ut

{
∑ut

i=1

(K
i )(

N−K
nt−i)

(N
nt

)
≤ 0.05}

The number of units that we should drop from the treatment group is the upper limit

of Uc minus the number of control units with undeVned outcomes uc , and the number

of units that we should drop from the control group is the upper limit of Ut minus ut. If

we have 100 units in both the treatment and control groups, and Vve from the treatment

group have missing outcomes, then we would estimate that at most 15 of the 200 Yit’s

are undeVned. Thus, we would subtract a maximum of 15 − 5 = 10 units from the

control group.

Of course, this formula will cause computational problems for sample sizes above

about 300, as computers have trouble dealing with very large factorials. However, it is

easy to get around this issue by using logarithms. SpeciVcally, the fractions above can

be rewritten as

(K
i )(

N−K
nc−i)

(N
nc

)
= exp{(

∑K
j=1 ln(j)−

∑i
j=1 ln(j)−

∑K−i
j=1 ln(j) +

∑N−K
j=1 ln(j)−∑

j = 1nc−ilnj −
∑N−K−(nc−i)

j=1 −(
∑N

j=1 ln(j)−
∑nc

j=1 ln(j)−
∑N−nc

j=1 ln(j)))}

and

(K
i )(

N−K
nt−i)

(N
nt

)
= exp{(

∑K
j=1 ln(j)−

∑i
j=1 ln(j)−

∑K−i
j=1 ln(j) +

∑N−K
j=1 ln(j)−∑

j = 1nt−ilnj −
∑N−K−(nt−i)

j=1 −(
∑N

j=1 ln(j)−
∑nt

j=1 ln(j)−
∑N−nt

j=1 ln(j)))}

These relationships can be derived by writing the left-hand equations out in factorial

form and then using the fact that x = exp{ln(x)}. Unlike the original fractions, the
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right-hand formulas can be calculated easily with a computer for very large samples.

My website provides R code for calculating the upper limits of Ut and Uc for any sample

size, as well as computing the bounds for the RATE.

Like upward bounding, the feasibility of downward bounding depends on the situa-

tion. One of its major advantages is that it does not rely on the covariates. Another is

that researchers do not need to worry about unrestricted outcomes, which is sometimes

the case with upward bounding. However, in cases where more than about 10% of units

have undeVned outcomes, only very strong treatment eUects will survive downward

bounding. Another option that researchers can use is these cases is sensitivity analysis,

which I develop in the next section.

Sensitivity Analysis. In cases where a signiVcant number of units have missing or un-

deVned outcomes, researchers can report the sensitivity of their results to diUerent levels

of attrition bias. There are a number of ways that researchers could test the sensitivity

of the results. For now, I will propose two straightforward techniques that are easy to

interpret. First, for studies with missing outcomes, researchers can do upward sensitiv-

ity analysis by examining what values the missing units would need to have to make the

results insigniVcant. For undeVned outcomes, researchers can use downward sensitivity

analysis, which involves determining what percentage of the units with the highest or

lowest outcomes in treatment or control groups would need to have undeVned counter-

factual outcomes for the results to be insigniVcant.

The steps for upward sensitivity analysis are as follows. First, Vnd the least extreme

value that will make the results insigniVcant if all missing treatment outcomes are set

at that value. Second, do the same for the missing control outcomes. Third, Vnd the
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standardized values for these least extreme imputed outcomes with respect to the treat-

ment and control groups. Researchers can report the standardized values. They can also

try diUerent pairs of imputed values, the Vrst for the treated units and the second the

control units, and graph the region where the results remain signiVcant. I construct such

a graph for a study about ... on page X.

For downward sensitivity analysis, researchers can simply drop units with the highest

or lowest outcomes from the treatment group until the results become insigniVcant, and

then do the same for the control group. They can report these numbers as percentages

of treatment or control groups. They could also graph the set of these values were

the results will remain signiVcant. A number of interest here is the lowest sum of the

pair of values. This number is the minimum amount of units that would need to have

unobserved counterfactual outcomes for the results to be insigniVcant.

My website provides R code for all of the procedures described in this section. Except

in cases where there is low attrition or very high treatment eUects, sensitivity analysis

will usually be a more viable option for researchers than bounding.

Transforming the Outcomes. The simplest solution to attrition is sometimes to redeVne

the outcomes so that all units have outcomes. This is usually easiest when all outcomes

are observed but some are undeVned. For instance, political scientists are sometimes

interested in using regression discontinuity to estimate how winning an election at time

t aUects a candidates vote share at time t+ 1. However, some winning and losing candi-

dates do not run at time t+1, making their outcomes undeVned. An easy solution to this

problem is to change the outcome to a dummy variable indicating whether the candidate

was elected to oXce at time t + 1, which gives all candidates an outcome, even if they
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Table 1. DiUerent Scenarios for Studies Facing Attrition

Degree of Information Type of Attrition Parameter of Interest
1. Known Units 1. Missing Outcomes (M) 1. Restricted Average
2. Phantom Units 2. UndeVned Outcomes (U) Treatment EUect

3. Known Mixture (M, U) 2. DiUerence in
4. Unknown Mixture (M, U, L) World Averages

did not run. The feasibility of redeVning the outcome usually depends on the question

of interest and the data available, but it can be an adequate solution in some cases.

Section 3: Versions of the Attrition Problem

Table 1 shows how attrition problems can vary across studies along three diUerent

dimensions. The Vrst column lists the degrees of the attrition problem. The most man-

ageable cases are ones where researchers know all of the units that were originally in

the sample. In other words, there are no phantom units. This information makes it much

easier to use techniques like imputing, bounding, or sensitivity analysis. In other cases,

researchers may know that some of the units that were initially assigned to treatment

or control are missing. If it is reasonable to assume that treatment status did not aUect

whether these units were missing from the dataset, then researchers can simply redeVne

the treatment eUect to the eUect for the units in their sample. However, if treatment as-

signment might have aUected whether these units were in the sample, then the options

moving forward will be limited. Some progress may be made if it is possible to determine

(or estimate) the original size of the sample and recreate the missing units, setting their

outcomes as lost (L).

The second column shows the possible types attrition for units in the dataset. In the

Vrst case, all units are known to have deVned outcomes, but some are missing. This
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scenario allows for imputation, upward bounding, and upward sensitivity analysis. In

the second case, all units have observed outcomes, but some are undeVned. Principal

stratiVcation, downward bounding, and downward sensitivity analysis are possible in

this scenario. The third case is a knownmixture of the Vrst two, meaning that all missing

outcomes are known to be deVned. Lastly, there may be an unknown mixture of missing

and unknown outcomes. This type of attrition is the most diXcult to manage.

The last column shows two main parameters of interest. Recall that both of these

parameters are equivalent to the Average Treatment EUect whenever all potential out-

comes are deVned. On the other hand, when any potential outcomes are undeVned, so is

the ATE. The Restricted Average Treatment EUect and DiUerence in World Averages are

not only diUerent substantively, but sometimes require diUerent estimation strategies.

In general, the DIWA is easier to estimate the RATE. The main diUerence is that when

estimating the DIWA, it is possible to ignore to ignore phantom units, unless researchers

want to include the outcomes of units that may not be in the dataset under treatment or

control.

These categories are key to determining the strategies that researchers have to address

attrition. There can be very promising options, or very limited ones, depending on what

Section 4: Strategies and Examples

Table 2 shows the viable strategies for each of the general scenarios that could arise

under the framework I outline in the previous section. I do not have space here to go

through scenario in detail, but there are some general patterns that are worth mentioning

before moving on to the examples.
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The Vrst is that it is very diXcult for researchers to use any of these methods if they

do not know whether missing outcomes are deVned or undeVned. Without this in-

formation, it is unclear to know whether to impute for certain units or use principal

stratiVcation, or upward or downward bound. In this cases, researchers might consider

using a variety of these methods to determine the robustness of their results to diUerent

techniques, since no single method will be adequate on its own.

The second relates to the extent tow which missing units pose a problem to inference.

When datasets are missing units, researchers sometimes spend time and resources hunt-

ing down these units and determining what happened to them. In some cases, these

eUorts can greatly improve a researchers ability to draw inferences. In others, however,

there is surprisingly little to be gained from this additional information. For instance,

they provide no help in estimating the DIWA, and they do not provide leverage for esti-

mating the RATE when it unclear whether many missing units are deVned or undeVned.

Thus, researches should verify that getting this additional information will be helpful

before they invest resources in acquiring it.

Third, the RATE is never easier to estimate than the DIWA. The DIWA is either iden-

tiVed or can be bounded in every case except (15) and (16), which are the cases where

researchers do not know whether missing outcomes are deVned or undeVned. However,

researchers are usually more interested in the RATE than the DIWA, because they care

about how certain interventions aUect individuals. The DIWA is just the diUerence be-

tween the deVned treated outcomes and deVned control outcomes, which could be partly

explained by attrition. Nevertheless, estimating the DIWA could be important in some

contexts, and researchers might consider focusing on it when the RATE is diXcult to

estimate.
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I will now move on to discuss three examples of studies that face attrition, start-

ing with a 2009 article by Blattman that tests whether quasi-random conscription into

the military made males in Uganda more likely to participate in politics later in life.6

Blattman uses the fact that boys were as-if randomly abducted and forced into military

service at young ages to test whether exposure to war aUected their willingness to vote

later in life. This study is notable because although there were missing units, Blattman

hunted down the names of everyone who was initially in the sample so that no one

would be missing from the dataset.

[Note: I will Vnish this section once I have a better idea about the available methods.]

Conclusion

This paper investigates one of the major threats to causal inference in experimental

research. My intention is not to deter researchers from using real and natural experi-

ments, even when there is substantial attrition. Rather, I simply want to encourage them

to think carefully about attrition problems when they arise. There are situations where

units with missing outcomes can be dropped, but only can justify doing so. I provide

a mathematical framework here that reveals when dropping units may be permissible,

even when missingness is not as-if random. When units with missing outcomes cannot

be dropped, researchers should select the best available strategy for their study, which

will largely depend on the issues that I discuss in this paper.

6Blattman 2009
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